Math - Negative Numbers

Izolipe Logo
Number line with hints

Negative numbers are a part of the real number system that can represent concepts such as debt, direction, and etc…


For every real number aa, has a negative a-a

a+(a)=0a + (-a) = 0

Examples:


Properties of Negative

To works with negative numbers, we use following properties.

IndexPropertyExample
1(1)x=x(-1)x = -x(1)5=5(-1)5 = -5
2(x)=x-(-x) = x(5)=5-(-5) = 5
3(x)y=x(y)=(xy)(-x)y = x(-y) = -(xy)(2)3=2(3)=(23)(-2)3 = 2(-3) = -(2*3)
4(x)(y)=xy(-x)(-y) = xy(10)(7)=107(-10)(-7) = 10 * 7
5(x+y)=xy-(x + y) = -x - y(9+7)=97-(9 + 7) = -9 - 7
6(xy)=yx-(x - y) = y - x(35)=53-(3 - 5) = 5 - 3

Law of Signs

Addition & Subtraction

()()=()(+)(+)=(+)()(+)=()(+)()=(+)(-)(-) = (-)\\ (+)(+) = (+)\\ \LARGE(-)\normalsize (+) = (-)\\ \LARGE(+)\normalsize (-) = (+)

Multiplication & Division

()()=(+)(+)(+)=(+)()(+)=()(+)()=()(-)(-) = (+)\\ (+)(+) = (+)\\ (-)(+) = (-)\\ (+)(-) = (-)

CC0 1.0 Universal; Felipe Izolan;