Math - Linear Inequalities

linear inequaliy graph

Linear Inequalities is an inequality that represents a half-plane divided by a straight line.


What is a Linear Inequality?

Examples

y/2>8y/2 > 8
2y<2x+82y < 2x + 8
10x5010x \ge 50
7x+43(3x8)7x + 4 \le 3(3x - 8)


Solving Linear Inequalities

linear inequaliy graph

x+3<3x1x + 3 < 3x - 1

x+3<3x1x+33<3x13x<3x41x3x<3x3x42x<42x×1<4×12x>42x2>422x2>2x>2x + 3 < 3x - 1\\ x + 3 - 3 < 3x - 1 - 3\\ x < 3x - 4\\ 1x - 3x < 3x - 3x - 4\\ -2x < -4\\ -2x \times -1 < -4 \times -1\\ 2x > 4\\ \frac{2x}{2} > \frac{4}{2}\\ \frac{\cancel{2}x}{\cancel{2}} > 2\\ x > 2


linear inequaliy graph

2(x+2)15+2(4x)2(x + 2) - 1 \le 5 + 2(4 - x)

2(x+2)15+2(4x)2x+415+82x2x+3132x2x+331332x2x102x2x+2x102x+2x4x104x41044x42.5x2.52(x + 2) - 1 \le 5 + 2(4 - x)\\ 2x + 4 - 1 \le 5 + 8 - 2x\\ 2x + 3 \le 13 - 2x\\ 2x + 3 - 3 \le 13 - 3 - 2x\\ 2x \le 10 - 2x\\ 2x + 2x \le 10 - 2x + 2x\\ 4x \le 10\\ \frac{4x}{4} \le \frac{10}{4}\\ \frac{\cancel{4}x}{\cancel{4}} \le 2.5\\ x \le 2.5


Graphing Linear Inequalities

linear inequality graph with hints

The best way to graph a linear inequality is to write the inequality in slope-intercept form, then test the inequality to determine which side of the line to shade.


slope intercept formula

The slope-intercept formula


Graph Line

Depending on the inequality operator used, the line in the graph will be solid or dashed.

graph dashed line

Graphing Inequalities (youtube)
Graphing two variable inequality (youtube)


Examples

2(x + 10) \le 30
2(x+10)302x+2030y2x+202(x + 10) \le 30\\ 2x + 20 \le 30\\ y \ge 2x + 20


6x + 3y > 9
6x+3y>96x6x+3y>6x+93y>6x+93y3>6x+93y>2x+36x + 3y > 9\\ 6x - 6x + 3y > -6x + 9\\ 3y > -6x + 9\\ \frac{\cancel{3}y}{\cancel{3}} > \frac{-6x+9}{3}\\ y > -2x + 3


3(y + 3) < 6(x - 2) + 12
3(y+3)<6(x2)+123y+9<6x12+123y+9<6x3y+99<6x93y<6x93y3<6x99y<2x33(y + 3) < 6(x - 2) + 12\\ 3y + 9 < 6x - 12 + 12\\ 3y + 9 < 6x\\ 3y + 9 - 9 < 6x - 9\\ 3y < 6x - 9\\ \frac{\cancel{3}y}{\cancel{3}} < \frac{6x-9}{9}\\ y< 2x - 3


-2x - 2y \ge 2x + 4
2x2y2x+42x+2x2y2x+2x+42y4x+41×2y1(4x+4)2y4x42y24x42y2x2-2x - 2y \ge 2x + 4\\ -2x + 2x - 2y \ge 2x + 2x + 4\\ -2y \ge 4x + 4\\ -1 \times -2y \ge -1(4x+4)\\ 2y \le -4x - 4\\ \frac{\cancel{2}y}{\cancel{2}} \le \frac{-4x-4}{2}\\ y \le -2x - 2