Math - Linear Inequalities

ʕ•ﻌ•ʔ
Linear inequality graph

y > 2x + 1

Linear inequalities represent a region of a plane, where the solutions are the values of the variable(s) that satisfy the inequality.


Key Characteristics of Linear Inequalities

Examples of Linear Inequalities

2x+3y>72x + 3y > 7
y5x2y ≤ 5x - 2
x4x ≥ 4

Examples of Non-linear Inequalities

x2+y225x² + y² ≤ 25
y>2x31y > 2x³ - 1
1/x+y<31/x + y < 3


Solving Linear Inequalities

Inequality x < 2

7x3<117x3+3<11+37x<147x7<14777<147x<27x - 3 < 11\\ 7x - 3 + 3 < 11 + 3\\ 7x < 14\\ \frac{7x}{7} < \frac{14}{7}\\ \frac{\cancel{7}}{\cancel{7}} < \frac{14}{7}\\ x < 2


Inequality x >= 3

3(x3)2x+63x92x+63x9+92x+6+93x2x+153x+2x2x+2x+155x155x51555x5155x33(x-3) \ge -2x + 6\\ 3x - 9 \ge -2x + 6\\ 3x - 9 + 9 \ge -2x + 6 + 9\\ 3x \ge -2x + 15\\ 3x + 2x \ge -2x + 2x + 15\\ 5x \ge 15\\ \frac{5x}{5} \ge \frac{15}{5}\\ \frac{\cancel{5}x}{\cancel{5}} \ge \frac{15}{5}\\ x \ge 3


Inequality x < -4

x+84<2x74x+84<4(2x7)4x+84<4(2x7)x+8<8x28x+88<8x288x<8x361x+8x<8x+8x369x<369x9<3699x9<369x<4\frac{x+8}{4} < -2x - 7\\ 4 * \frac{x+8}{4} < 4(-2x - 7)\\ \cancel{4} * \frac{x+8}{\cancel{4}} < 4(-2x - 7)\\ x+8 < -8x - 28\\ x+8-8 < -8x - 28-8\\ x < -8x - 36\\ 1x + 8x < -8x + 8x - 36\\ 9x < -36\\ \frac{9x}{9} < \frac{-36}{9}\\ \frac{\cancel{9}x}{\cancel{9}} < \frac{-36}{9}\\ x < -4


Graphing Linear Inequalities

Graphing linear inequalities

The best way to graph a linear inequality is to write the inequality in slope-intercept form, then test the inequality to determine which side of the line to shade.


Slope-intercept form

y=mx+by = mx + b


Graph Line

Graph line dashed & solid

Depending on the inequality operator used, the line in the graph will be solid or dashed:


Graphing Inequalities (youtube)
Graphing two variable inequality (youtube)


Examples

2(x+10)302x+2030y2x+202(x + 10) \le 30\\ 2x + 20 \le 30\\ y \ge 2x + 20

6x+3y>96x6x+3y>6x+93y>6x+93y3>6x+933y3>6x+93y>2x+36x + 3y > 9\\ 6x - 6x + 3y > -6x + 9\\ 3y > -6x + 9\\ \frac{3y}{3} > \frac{-6x+9}{3}\\ \frac{\cancel{3}y}{\cancel{3}} > \frac{-6x+9}{3}\\ y > -2x + 3

2x2y2x+42x+2x2y2x+2x+42y4x+412y1(4x+4)2y4x42y24x422y24x42y2x2-2x - 2y \ge 2x + 4\\ -2x + 2x - 2y \ge 2x + 2x + 4\\ -2y \ge 4x + 4\\ -1 * -2y \ge -1(4x+4)\\ 2y \le -4x - 4\\ \frac{2y}{2} \le \frac{-4x-4}{2}\\ \frac{\cancel{2}y}{\cancel{2}} \le \frac{-4x-4}{2}\\ y \le -2x - 2

CC0 1.0 Universal; Felipe Izolan;