Computer System - Boolean Functions

Using boolean values and operators, you can create a boolean function.


The Truth Table of Boolean Functions

A boolean is simple; it can only be 0 or 1. Boolean functions have a fixed number of rows in a truth table based on this.


f(x, y) = (x + y)´ . y

xy(x+y)´.y
000
010
100
110

f(x, y, z) = (x + z) . (y + z)

xzy(x+z).(y+z)
0000
0010
0101
0111
1000
1011
1101
1111

Boolean Function Synthesis

The boolean function synthesis is the process of creating a Boolean function that performs a desired logic operation.


You have two ways to synthesize a boolean function:

Example

xyzunknown
0001 <- x´ . y´ . z´
0010
0101 <- x´ . y . z´
0110
1000
1010
1100
1110

f(x, y, z) = (x´ . y´ . z´) + (x´ . y . z´)

Simplifying

Typically, the result of synthesizing a Boolean function is a complex expression that needs to be simplified.

1. Start
(x´ . y´ . z´) + (x´ . y . z´)
2. Apply Distributive Law: (x . y) + (x . z) = x . (y + z)
x´ . z´ . (y´ + y)
3. Apply Complement Law: x´ + x = 1
x´ . z´ . 1
4. Result:
x´ . z´